The DJ-1L166P mutant protein associated with early onset Parkinson's disease is unstable and forms higher-order protein complexes.
نویسندگان
چکیده
Parkinson's disease (PD) is a common neurodegenerative disorder that involves the selective degeneration of midbrain dopaminergic neurons. Recently DJ-1 mutations have been linked to autosomal-recessive early-onset Parkinsonism in two European families. By using gel filtration assays under physiological conditions we demonstrate that DJ-1 protein forms a dimeric structure. Conversely, the DJ-1L166P mutant protein shows a different elution profile as compared with DJ-1WT both in overexpression cellular systems or in lymphoblasts cells, suggesting that it might form higher order protein structures. Furthermore we observed that the level of DJ-1L166P mutant protein in the patient's lymphoblasts was very low as compared with the wild-type protein. We excluded a potential transcriptional impairment by performing quantitative RT-PCR on the patient's material. Pulse-chase experiments in transfected COS-1 cells and cycloheximide treatment in control and patient lymphoblasts indicated that the mutant protein was rapidly degraded. This rapid turnover and the structural changes of DJ-1L166P mutant protein might be crucial in the disease pathogenesis.
منابع مشابه
TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson's disease brains.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the Substantia Nigra and the formation of ubiquitin- and alpha-synuclein (aSYN)-positive cytoplasmic inclusions called Lewy bodies (LBs). Although most PD cases are sporadic, families with genetic mutations have been found. Mutations in PARK7/DJ-1 have been associated with autosomal recessi...
متن کاملDistinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control
The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson's disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of...
متن کاملThe 1.1-A resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson's disease.
Mutations in DJ-1, a human gene with homologues in organisms from all kingdoms of life, have been shown to be associated with autosomal recessive, early onset Parkinson's disease (PARK7). We report here the three-dimensional structure of the DJ-1 protein, determined at a resolution of 1.1 A by x-ray crystallography. The chain fold of DJ-1 resembles those of a bacterial protein, PfpI, that has b...
متن کاملAssociation of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease.
Mutations in genes encoding both DJ-1 and pten-induced kinase 1 (PINK1) are independently linked to autosomal recessive early-onset familial forms of Parkinson's disease (PD). We here report identification of a family with PD patients harboring novel heterozygous missense mutations in both PINK1 and DJ-1 genes encoding DJ-1A39S and PINK1P399L, respectively. In transfected cells, DJ-1 interacts ...
متن کاملThe Parkinson's disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis.
Mutations in the DJ-1 gene cause early-onset autosomal recessive Parkinson's disease (PD), although the role of DJ-1 in the degeneration of dopaminergic neurons is unresolved. Here we show that the major interacting-proteins with DJ-1 in dopaminergic neuronal cells are the nuclear proteins p54nrb and pyrimidine tract-binding protein-associated splicing factor (PSF), two multifunctional regulato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 12 21 شماره
صفحات -
تاریخ انتشار 2003